PTA 106 Unit 1 Lecture 2

Introduction to the Endocrine System

1

Hormone Interactions

Patterns of Hormone Action

Endocrine

Mechanism of Action for lipid-soluble or steroid Endocrine hormones

Mechanism of action for water-soluble Hormones

© John Wiley & Sons, Inc.

Action of the Hypothalamus as the "Master" Gland

Controls the activity of the pituitary gland by releasing hormones called releasing or inhibiting hormones

(c) Diencephalon

C John Wiley & Sons, Inc

Action of the Hypothalamus as the "Master" Gland

Hormone Produced:

Growth Hormone Releasing Hormone or Somatocrinin (GHRH) Growth Hormone Inhibiting Hormone or Somatostatin (GHIH) Thyrotropin Releasing Hormone (TRH) Gonadotropin Releasing Hormone (GnRH) Prolacin Releasing Hormone (PRH) Prolacin Inhibiting Hormone (PIH) Corticotropin Releasing Hormone (CRH) Dopamine.

* Hormone are released to blood in the Hypophyseal portal artery which is part of the Hypophyseal portal system. *

Actions of the Posterior Pituitary or Neurohypophysis

© John Wiley & Sons, Inc.

Actions and Regulation of ADH

Major Actions of Oxytocin

- Stimulates contraction of smooth muscle cells of the uterus during childbirth
- Stimulates contraction of myoepithelial cells in the breast to cause milk letdown

Hormones Released from the Anterior Pituitary or Adenohypophysis

Somatotrophs:

Human growth hormone or somatotrophin (hGH) <u>Hypothalamic control</u>: hGH releasing hormone (GHRH) hGH inhibiting hormone (GHIH)

Thyrotrophs:

Thyroid-stimulating hormone (TSH)

Hypothalamic control:

Thyrotropin releasing hormone (TRH) (GHIH)

Hormones Released from the Anterior Pituitary or Adenohypophysis

Hormones Released from the Anterior Pituitary or Adenohypophysis

Endocrine activity of the Thyroid Gland

• Hypothyroidism:

Cretinism: Physical and mental growth and development is greatly retarded

• Hyperthyroidism Toxic goiter

Graves disease with exophthalmos

Endocrine activity of the Thyroid Gland

- Follicular cells: T3 and T4
- Target Tissue; Almost all body tissues
- Hormone Affects: Increase body Metabolism Increases gluconeogenesis Increases glycolysis Increases Lipolysis Increased basal metabolic rate

Increases Heart Rate and force of contraction

Endocrine activity of the Thyroid Gland

• Hypothyroidism:

endemic goiter: (due to I2 deficiency)

Myxedema: bagginess under the eyes and swelling of the face.

Arteriosclerosis: due to increase in blood cholesterol

Cretinism: extreme hypothryoidism during infancy and childhood

Parathyroid Hormones

• Principle Cells PTH

Interactions of PTH and Calcitonin

Changes in Calcium Balance

Electrolyte	Causes	Symptoms
Hypocalcemia Low Calcium (<4 mEq/l) Normal Range: 4.5 – 5.3 mEq/l)	Hypoparathyroidism, increased loss, decreased intake, elevated phosphate	Numbness and tingling of fingers, hyperactive reflexes, muscle tetany, bone fractures, laryngeal muscle spasms that lead to asphyxiation
Hypercalcemia High Calcium (>11 mEq/l)	Hyperparathyroidism, excessive vitamin D, Paget's disease	Lethargy, weakness, anorexia, nausea, vomiting, polyuria, itching, bone pain, depression, confusion, and coma

Function of the Pineal Gland

- Pineal secretion peaks between the ages of 1 and 5 and declines by 75% by the end of puberty.
- Produces two hormones, serotonin and melatonin.
- Melatonin has been implicated in some human mood disorders such as depression, sleep disturbances, SAD and PMS. Evidence remains some what inconclusive, but melatonin is elevated in both SAD and PMS and melatonin levels can be reduced by phototherapy (exposure to 2 to 3 hours of bright light/day)
- Melatonin in other animals controls seasonal breeding patterns and sexual maturation. Some physiologists believe it may also regulate puberty in humans

Function of the Pineal Gland

- Serotonin is produce by the Pineal, CNS neurons, and GI entroendocrine cells.
- Serotonin is believed to play an important role in regulation of aggression, body temperature, mood, sleep, vomiting, sexuality, and appetite.
- Low levels (hyposecretion) of serotonin have been associated with aggressive and angry behaviors, clinical depression, OCD (obsessive-compulsive disorder), migraines, irritable bowel syndrome, tinnitus, fibromyalgia, and SIDS (sudden infant death syndrome).
- Hyper secretion leads to Serotonin Syndrome which is potentially fatal. (usually cause by drug interactions)